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A new Quadratic Spline based Interface (QUASI) reconstruction algorithm is presented
which provides an accurate and continuous representation of the interface in a multiphase
domain and facilitates the direct estimation of local interfacial curvature. The fluid inter-
face in each of the mixed cells is represented by piecewise parabolic curves and an initial
discontinuous PLIC approximation of the interface is progressively converted into a smooth
quadratic spline made of these parabolic curves. The conversion is achieved by a sequence
of predictor–corrector operations enforcing function (C0) and derivative (C1) continuity at
the cell boundaries using simple analytical expressions for the continuity requirements.
The efficacy and accuracy of the current algorithm has been demonstrated using standard
test cases involving reconstruction of known static interface shapes and dynamically evolv-
ing interfaces in prescribed flow situations. These benchmark studies illustrate that the
present algorithm performs excellently as compared to the other interface reconstruction
methods available in literature. Quadratic rate of error reduction with respect to grid size
has been observed in all the cases with curved interface shapes; only in situations where
the interface geometry is primarily flat, the rate of convergence becomes linear with the
mesh size. The flow algorithm implemented in the current work is designed to accurately
balance the pressure gradients with the surface tension force at any location. As a conse-
quence, it is able to minimize spurious flow currents arising from imperfect normal stress
balance at the interface. This has been demonstrated through the standard test problem of
an inviscid droplet placed in a quiescent medium. Finally, the direct curvature estimation
ability of the current algorithm is illustrated through the coupled multiphase flow problem
of a deformable air bubble rising through a column of water.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Flows with moving interfaces and the associated heat and mass transfer form an integral part of many natural and indus-
trial processes. Most multiphase flows are characterized by the presence of fluid structures over a variety of scales. A com-
mon example of this is seen in the disintegration of a liquid jet in air where the characteristic dimension varies from the jet
diameter to the size of fine droplets. These diverse flow behaviors are the consequence of interfacial phenomena and related
processes, whose understanding is of paramount importance in the design of devices such as injectors. Although numerical
modeling offers promising tools in this regard, the added non-linearity of interfacial phenomena makes the modeling of
these flows much more challenging.
. All rights reserved.
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Broadly, the available multiphase modeling techniques can be classified as moving-grid and fixed-grid methods based on
the relative deformation of the grid with respect to interface dynamics. In a moving-grid method, the computational grid for
each fluid sub-domain can be distinctly identified and the grid points located on the interface move along with it to accu-
rately predict the temporal evolution of the interface. However, at large interfacial deformations, the method requires con-
tinuous remeshing effort to account for the changes in topology. On the other hand, fixed-grid methods effectively predict
the dynamics of the interface using special schemes on a non-deformable grid with less computational effort. The two
important classifications of fixed-grid methods are the front-tracking and the front-capturing techniques, which involve ex-
plicit and implicit treatment of the interface respectively. The application of a front-tracking technique to represent the
interface explicitly by a distribution of marker points connected by spline interpolation was demonstrated by Popinet
and Zaleski [1] where the interface dynamics was effectively tracked by Lagrangian advection of these marker points in
the flow field. The marker points easily resolve the sub-grid level fluid structures and the use of spline curves helps in
the direct estimation of interface attributes like curvature which are required for the evaluation of surface tension forces.
In spite of these advantages, difficulties arise with regard to accurate mass conservation and in simulating flows with inter-
face merger and breakup. The front-capturing techniques like volume of fluid (VOF) and level set (LS), on the other hand,
effectively resolve macro-fluid structures larger than the grid spacing [2,3]. They use characteristic phase functions for an
implicit description of the interface, which automatically handles interface merger and breakup.

The level set method uses the signed distance ð/Þ of grid points from the interface for an implicit representation. The
advection of the distance function ‘/’ and its subsequent re-initialization leads to the transient evolution of the interface.
Even though the level set method is attractive due to the differentiable properties of distance function, a complete conser-
vation of mass in the domain using level set is still a challenging issue. On the contrary, the VOF method enforces strict vol-
ume conservation of various constituent phases and uses a discrete volume fraction distribution (F) to represent the
interface. The cells are assigned with F value between 0 and 1, based on the volume fraction of the primary fluid (in the case
of a binary system) in the cell. The discontinuous nature of the volume fraction ‘F’ necessitates two geometric procedures,
namely: interface reconstruction and fluid advection, to track the fluid volumes. The interface reconstruction procedure in-
volves estimation of the approximate orientation and position of the interface within the cell and the advection process geo-
metrically evaluates the material volume flux through the cell faces based on the reconstructed interface.

Issues in VOF method primarily arise due to the non-uniqueness of interface reconstruction procedure. Earlier reconstruc-
tion methods like DeBar’s piecewise linear approximation [4], the stair-step approximation of Hirt and Nichols [2] and SLIC
(Simple Line Interface Calculation) reconstruction of Noh and Woodward [5] resulted in unphysical ‘flotsam’ and ‘jetsam’
even for simple flow configurations. Notable improvement in the reconstruction procedure was brought in by the Youngs’
PLIC [6] algorithm (Piecewise Linear Interface Calculation) which allowed the interfaces to be represented by straight line
segments normal to the gradient of volume fraction (F). The precise location of these line segments within each cell is then
obtained based on the volume of primary fluid in the cell. In spite of its simplicity and robustness, the sensitivity of the PLIC
reconstruction on the algorithm used to calculate the volume fraction gradients, renders it non-unique. Also, the PLIC rep-
resentation suffers from discontinuity of interface shape across the cell boundaries and the linear approximation of the inter-
face is insufficient to allow for the direct estimation of attributes like the local interfacial curvature. These factors have given
rise to the widespread use of special curvature calculation methods based on the volume fraction distribution. The convo-
lution (CV) technique of Williams et al. [7] uses a mollified volume fraction distribution obtained from the application of
various smoothing kernels. Other accurate methods include Height Function (HF) technique of Cummins et al. [8] where
the discrete sums of volume fractions are used to obtain the curvature information.

Alternatively, direct estimation of curvature using higher order approximations of the interface within mixed cells have
been considered by a few researchers. The Piecewise Parabolic Interface (PPIC) reconstruction was first presented by Price
et al. [9], where a second order equation was used to represent the interface. The method involves an iterative non-linear
optimization scheme to obtain the coefficients of quadratic expression. A similar generalized three-dimensional approach
was presented by Renardy and Renardy [10] and a direct estimate of curvature was used to calculate the surface tension
force in the interfacial cell. Although these methods possess higher interface reconstruction accuracy and lower magnitudes
of spurious currents (which are generally caused by error in the curvature estimation and the imbalance between pressure
gradients and surface tension force), the iterative error minimization procedure employed in these methods renders them
computationally intensive. Moreover, the parabolic interfaces obtained from these methods still suffer from discontinuities
at the cell boundaries. The other class of higher order methods proposed by Ginzburg and Wittum [11] and Lo’pez et al. [12]
involve cubic spline based interface reconstruction. In [11], an initial spline passing through the midpoints of the PLIC inter-
face is evolved into a cubic spline which conserves mass exactly in each of the mixed cells. The computations involve the
simultaneous solution of ‘3n’ equations (n – number of mixed cells forming the spline) subjected to volume constraint in
each cell. The cubic spline aids in the direct estimation of curvature using a continuous form of interface representation
in the whole domain; however, it tends to produce wavy interfaces in some cases due to the non-locality of errors.

In the current work, a new two-dimensional Quadratic Spline based Interface (QUASI) reconstruction algorithm is pre-
sented, where piecewise quadratic curves are used to represent the interface within each cell. A continuous quadratic spline
across the mixed cells ð0 < F < 1Þ is then evolved from a sequence of predictor–corrector operations, where the end points of
an initial PLIC interface approximation are corrected to enforce function and derivative (C0 and C1) continuities at the cell
boundaries. Simple analytical expressions have been derived for all the steps involved which effectively minimize the com-
putational effort required for the current algorithm. The use of higher order curves with constraints results in unique and
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accurate representation of the interface and aids in the direct estimation of the local interface curvature. Here, the QUASI
reconstruction procedure has been used in conjunction with the EMFPA fluid advection algorithm of Lo’pez et al. [12].
The accuracy of the QUASI reconstruction over the other methods has been clearly demonstrated using standard reconstruc-
tion and advection test cases.
2. The QUASI reconstruction

A general quadratic spline QiðXÞ using second order polynomial interpolation and satisfying C0 and C1 continuities at all
points (Fig. 1) can be expressed as
Q iðXÞ ¼ aiX
2 þ biX þ ci; X 2 ½Xi;Xiþ1�; i ¼ 1;2; . . . ;n: ð1Þ
Such a spline (Eq. (1)) passing through ‘n + 1’ nodes would require simultaneous solution of ‘3n’ equations to obtain the coef-
ficients ai; bi and ci ði ¼ 1;2; . . . ;nÞ. The conditions of function continuity ðQ iðXPÞ ¼ Yp; Q iþ1ðXPÞ ¼ Yp; i ¼ 1;2; . . . ;nÞ and
slope continuity (dQiðXPÞ=dX ¼ dQiþ1ðXPÞ=dX; i ¼ 2; . . . ;n or nþ 1) at all the interior points, provide the required ‘3n’ equa-
tions for a self-connected spline and ‘3n � 1’ equations for a non-self-connected spline. Closure in the latter case can be
achieved by setting ai ¼ 0 (straight line approximation) for either the first or the last spline function.

The use of spline function to represent the interface in a VOF problem is very challenging, as the data points which define
the spline function are not known a priori. But, with the knowledge of volume fraction data for each cell, it is possible to
convert this tedious problem into a systematic predictor–corrector procedure, which forms the essence of the current paper.
The overall procedure of the current QUASI reconstruction algorithm is briefly summarized below.

1. Initially, an approximate interface is reconstructed in all the mixed cells using the PLIC algorithm. In each mixed cell, a
straight line perpendicular to the gradient of phase function F is generated and it is located within the cell such that the
volume fraction constraint is satisfied. The end points of the interfaces formed in this manner are generally discontinuous
across the mixed cells, (Fig. 2(b)).

2. The next step involves the achievement of C0 continuity from the initial PLIC representation, where the end points from
the consecutive mixed cells are forced to coincide on the common edge of the cells.

3. A piecewise quadratic curve passing through these C0 continuous end points is then obtained in each cell (Fig. 2(c)) sub-
jected to the volume constraint in the corresponding cell. Analytical expressions relating the end points, volume fraction
and the coefficients of quadratic curve have been derived in Section 2.3.

4. For each pair of consecutive mixed cells, C1 continuous interfaces are obtained by moving the end points along the com-
mon edges of the cells such that the slopes of the parabolas on either side of a common edge are equal. The direct esti-
mation of the C1 continuous point for the given pair of cells is analytically possible using the relations derived in Section
2.4.

5. In the cases where it is not possible to obtain an explicit C0 continuous interface (ex: domain boundary), the above C1

correction procedure cannot be implemented. Under these circumstances, the discontinuous end point is moved along
the cell edge so that the curvatures at the midpoint of the interfaces for the consecutive mixed cells are matched.

6. The application of the above C0 and C1 correction procedure (steps 3–5) to all the mixed cells over a few iterations renders
a smooth quadratic spline representation of all the interface segments in the domain.

Fig. 2 shows the implementation of the above steps in reconstructing the sector of a circle. The details of the initial PLIC
prediction and the different hierarchy of corrections involved are given elaborately in the remainder of this section.
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Fig. 1. Quadratic spline representation of the interface.



Fig. 2. (a) Original shape of the sector of a circle; (b) initial interface approximation using PLIC reconstruction; (c) after implementing C 0 continuity and (d)
after implementing C1 correction.
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2.1. Initial PLIC reconstruction

The PLIC reconstruction procedure basically involves two steps namely: the estimation of interface orientation (normal)
and the exact positioning of interface subjected to volume constraint in the cell. A variety of normal estimation techniques
have been used in literature and these include Youngs’ [6] multi-dimensional stencil, LVIRA of Puckett et al. [13], ELVIRA of
Pilliod and Puckett [14] and the least-square linear and quadratic fitting methods of Scardovelli and Zaleski [15]. In the cur-
rent work, Youngs’ multidimensional stencil method [6] has been used for the estimation of interface normal, because of its
relative simplicity. Even though the other techniques possess higher order interface reconstruction accuracy [13–15], the
iterative C0 and C1 corrections employed in the QUASI algorithm reduce the sensitivity of the final interface shape on the
initial approximation. With the interface normal orientation thus obtained, the position of the linear interface segment
can be precisely [16,17] located based on the volume of primary fluid in the cell.

2.2. Establishing C0 continuity

The PLIC interfaces thus generated in the mixed cells are generally discontinuous, in contrast to the realistic fluid interface
configuration. The current QUASI algorithm resolves this problem by forcing C0 continuity of the interface segments in the
consecutive mixed cells. Generally, three scenarios of interface alignment arise from an initial PLIC representation. In the first
scenario, the end points of the PLIC interface in consecutive mixed cells lie on the common edge of the cells (Fig. 3(a)) and the
C0 continuous point is obtained by averaging the coordinates of the two discontinuous end points. In the second case, the end
point of interface in one of the cells alone may lie on the common edge (Fig. 3(b)) and hence, any one end point of the inter-
face in the neighbouring cell is moved to the common edge to obtain the C0 continuity. The use of the quadratic form of inter-
face representation allows arbitrary movement of interface end points and preserves the volume constraint criterion in the
cell by adjusting the midpoint of the interface segment suitably. The criterion for selecting the end point to be moved to the
common edge is explained in the following Section 2.2.1. The third scenario generally arises in the case of mixed cells which
are diagonal (Fig. 3(c)) to each other. Here, obtaining an explicit C0 continuity is not possible without introducing a new
mixed cell. Sometimes, similar problems also arise for mixed cells located on the boundary of the domain. This situation
is left to be dealt with the curvature correction procedure explained in Section 2.3.2.

2.2.1. Selection of movable end point
Establishment of C0 continuity in situations where only one interfacial end point in consecutive mixed cells lies on the

common edge requires special care. Fig. 4(a) illustrates such a situation where the end point bI of the interface in cell I alone
lies on the common edge 1–2. Such an initial PLIC interface configuration is fundamentally inconsistent, as vertex 2 lies in
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Fig. 3. C0 continuity from the initial PLIC interface: (a) end points on the common edge; (b) end points not on the common edge and (c) diagonal mixed cells
with un-connectable end points.
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Fig. 4. C 0 Continuity from PLIC Interfaces with only one end point on the common edge.

S.V. Diwakar et al. / Journal of Computational Physics 228 (2009) 9107–9130 9111
the secondary fluid zone with respect to cell I and in primary fluid zone with regard to cell II. Proper establishment of C0

continuity would alleviate such inconsistencies and this aspect is used as the first and main guiding criterion to select
the end point of cell II that will merge with point bI on the common edge. Also the interface obtained with the new end
points in cell II cannot have orientation which is at odds with the original orientation obtained from the gradients of volume
fraction since, any large variation would impose fluid topological inconsistencies at other locations in the domain. This sec-
ond criterion is functionally represented by the scalar product~nII �~n0II , where~nII is the normal of the interface obtained from
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the volume fraction gradients and~n0II is the orientation (normal) of the new interface obtained after moving one end point of
interface to the common edge in cell II. Ideally, the value of this dot product should be close to one for the configuration that
is least deviant from the original interface. In order to identify the appropriate C0 merger of end points, the different possi-
bilities of end-point relocation and primary fluid filling configurations need to be considered. Figs. 4(b)–4(e) show all pos-
sible ways of end point movement and primary fluid relocation for the initial PLIC configuration shown in Fig. 4(a). The
figures show only the tentative fluid zones and not the actual fluid areas as further adjustments for slope continuity and vol-
ume constraint need to be applied. In the cases (c) and (d), the vertex 2 is still in an inconsistent position with respect to fluid
zones of cells I and II. Out of the remaining configurations, case (b) is the most appropriate one since it has the maximum
value for the dot product of interface normals and also it implicitly maintains fluid consistencies at all the vertices of cell II.

2.3. Piecewise parabolic representation

After obtaining the C0 continuous end points in all the mixed cells, piecewise quadratic curves are fitted in each of the
cells, subjected to the volume constraint criteria. In the current work, analytical expressions have been derived which relate
the coefficients of the quadratic function to the local volume fraction and the locations of the end points lying on the cell
boundary. The quadratic function in each interfacial cell can be represented by a parabola of the form,
Y ¼ aX2 þ bX þ c ð2Þ
when the axis of the parabola is close to the vertical (Y) direction. Since the real fluid interface can have arbitrary orientation
within a cell, it is better to introduce a coordinate transformation for each mixed cell and express the equation of the parab-
ola in terms of the local coordinates. Price et al. [9] placed the local coordinate system at the center of the interfacial cell with
angle of rotation ‘h’ defined with respect to the global coordinate system. The parameter ‘h’ and the coefficients a, b and c,
were determined using the method of least squares. However, in the current work, the local coordinate system is placed at
the cell vertex in the primary fluid region that is far away from the line connecting the new end points (Fig. 5) and the ori-
entation is fixed based on the normal of the connecting line. This guarantees that all the points and respective projected
areas lie in the positive ordinate region of the local coordinate system.

The relations between the global (X,Y) and the local coordinate (x,y) system are given as,
x

y

� �
¼

nX nY

�nY nX

� �
X

Y

� �
�

Xp

YP

� �� �
; ð3Þ
where ðXp;YpÞ is the location of the reference vertex in the global coordinate system and ðnX ;nY Þ are the direction cosines of
the normal for the line connecting the end points of the parabola.

Fig. 5 shows a typical interfacial cell (volume fraction F and area Acell) in the global coordinate system (X–Y) with end
points 1 and 3 lying on the cell boundary. The local coordinate system (x–y) is such that the origin is at vertex P and the
orientation of the y-coordinate is perpendicular to the line connecting the end points 1 and 3. Aph is the total area (formed
by two triangles here) between the abscissa of the local coordinate system and the cell periphery (1 � P � 3) connecting the
end points in anti-clockwise orientation. Since three points are required for the complete description of parabola defined in
Eq. (2), point 2 is selected such that
x2 ¼
x1 þ x3

2
: ð4Þ
Hence for the fixed end points (1 and 3), finding the ordinate of the point 2 ðy2Þ subjected to the volume constraint provides
the parabolic function for the interface in the cell. The coefficients of the parabola (a, b and c) passing through the points 1, 2
and 3 can be determined as
F.Acell

3

2

1 Aph

Aph

y

P

X 

Y 

x

Fig. 5. Piecewise parabolic interface in a cell.
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a ¼ 2ðy1 þ y3 � 2y2Þ
ðx3 � x1Þ2

; ð5aÞ

b ¼ x2
1ðy1 þ 3y3 � 4y2Þ � x2

3ð3y1 þ y3 � 4y2Þ þ 2x1x3ðy1 � y3Þ
ðx3 � x1Þ3

; ð5bÞ

c ¼ ðx1 þ x3Þðx1y3 þ x3y1Þ � 4x1x3y2

ðx3 � x1Þ2
: ð5cÞ
The total area under the parabola between the end points 1 and 3 can be obtained as
Z 3

1
ydx ¼

Z 3

1
ðax2 þ bxþ cÞdx ¼

a x3
3 � x3

1

� �
3

þ
b x2

3 � x2
1

� �
2

þ cðx3 � x1Þ: ð6Þ
By substituting for the coefficients of a, b and c from Eqs. (5a)–(5c), this area expression can be simplified as
Z 3

1
ydx ¼ ðy1 þ y3 þ 4y2Þðx3 � x1Þ

6
: ð7Þ
From Fig. 5 it is seen that the area under the parabola is equal to the sum of primary fluid area within the cell and the area
ðAphÞ under the cell boundary within the endpoints of the parabola. i.e.
Z 3

1
ydx ¼ F � Acell þ Aphðx1; x3Þ; ð8Þ
where
Aphðx1; x3Þ ¼ ðxP � x1Þ
yP þ y1

2

� 	h i
þ ðx3 � xPÞ

y3 þ yP

2

� 	h i
: ð9Þ
The functional form of the above area will change based on the number of vertices lying in the primary fluid zone of the cell.
From Eqs. (7) and (8), the ordinate of the point ‘2’ is obtained as,
y2 ¼
1
4

6½F � Acell þ Aphðx1; x3Þ�
ðx3 � x1Þ

� ðy1 þ y3Þ
� �

: ð10Þ
With Eq. (10), the complete description of the parabola is obtained as a function of the end points and the volume of the
primary fluid in the cell.

2.4. C1 correction

After obtaining the piecewise parabolic form of the interface passing through the C0 continuous end points in each of the
mixed cells, the next step involves the enforcement of C1 continuity, where the slopes of the parabolas on either side of the
common edge are made the same. In the current work, analytical expressions have been derived which directly estimate the
location of the new end point on the common edge for a given set of consecutive mixed cells based on the volume constraint
in the respective cells. Generally, the slopes of parabola at the two end points (1 and 3) are given as
dy
dx






3
¼ 2ax3 þ b ¼ ðx3 � x1Þð2y1 þ 4y3Þ � 6½F � Acell þ Aphðx1; x3Þ�

ðx3 � x1Þ2
; ð11aÞ

dy
dx






1
¼ 2ax1 þ b ¼ ðx1 � x3Þð4y1 þ 2y3Þ þ 6½F � Acell þ Aphðx1; x3Þ�

ðx3 � x1Þ2
: ð11bÞ
In order to achieve C1 continuity at the common edge, a common coordinate system is considered for each pair of the inter-
facial cells. A typical configuration of such system is shown in Fig. 6. Here the cells I and II have the common edge (i � j)
where the C0 continuous initial end point of the parabolas in the cells is 30. The volume of the primary fluid as per the C0

continuous interface approximation is shown as the shaded zone.
Now the slopes of the two parabolas of cells I and II at point 30 are given by
dy
dx





I
30
¼ ð2ax30 þ bÞI ¼

ðx30 � x1Þð2y1 þ 4y30 Þ � 6½ðF � AcellÞ þ Aphðx1; x30 Þ�I
ðx30 � x1Þ2

; ð12aÞ

dy
dx





II
30
¼ ð2ax30 þ bÞII ¼

ðx30 � x2Þð4y30 þ 2y2Þ þ 6½ðF � AcellÞ þ Aphðx30 ; x2Þ�II
ðx2 � x30 Þ

2 : ð12bÞ
Now parametrizing the point 30 in terms of distance ðaÞ along the common edge, we obtain
x30 ¼ xi þ aðxj � xiÞ;
y30 ¼ yi þ aðyj � yiÞ:

ð13Þ
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Fig. 6. Slope continuity at the common edge from function continuity.
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Substituting for the coordinates of 3‘ and area ðAphÞ from Eqs. (13) and (9) respectively, Eq. (12a) can be rewritten in terms
of ‘a’ as
dy
dx





I
a
¼ AIa2 þ BIaþ CI

ðDIaþ EIÞ2
; ð14Þ
where the coefficients are
AI ¼ ðxj � xiÞðyj � yiÞ;
BI ¼ ½2ðxj � xiÞðy1 � yiÞ þ 4ðyj � yiÞðxi � x1Þ�;
CI ¼ ðxi � x1Þð2y1 þ 4yiÞ � 6½F:Acell þ Aphðx1; xiÞ�I;
DI ¼ ðxj � xiÞ;
EI ¼ ðxi � x1Þ:
Similarly, Eq. (12b) can be rewritten as
dy
dx





II
a
¼ AIa2 þ BIIaþ CII

ðDIaþ EIIÞ2
; ð15Þ
where
BII ¼ ½2ðxj � xiÞðy2 � yiÞ þ 4ðyj � yiÞðxi � x2Þ�;
CII ¼ ðxi � x2Þð4yi þ 2y2Þ þ 6½F:Acell þ Aphðxi; x2Þ�II;
EII ¼ ðxi � x2Þ:
Eqs. (14) and (15) can be equated to obtain the point 3 at which the slopes of parabola on either side of the cell are equal.
This yields a cubic equation in ‘a’ of the form
f ðaÞ ¼ Pa3 þ Qa2 þ Raþ S ¼ 0; ð16Þ
where the coefficients are given as
P ¼ D2
I ðBI � BIIÞ þ 2AIDIðEII � EIÞ;

Q ¼ D2
I ðCI � CIIÞ þ AI E2

II � E2
I

� 	
þ 2DIðBIEII � BIIEIÞ;

R ¼ BIE
2
II � BIIE

2
I

� 	
þ 2DIðCIEII � CIIEIÞ;

S ¼ CIE
2
II � CIIE

2
I :
Eq. (16) can be solved directly to obtain the C1 correction for the given pair of interfacial cells. The application of the above C1

correction procedure to all the interfacial cells iteratively leads to the smooth and continuous quadratic spline representa-
tion of the interface as shown in Fig. 2(d). Typically, the optimum number of iterations for the overall C1 correction has been
found to be 10 in most cases, as further operations do not seem to alter the interface end points significantly.

2.5. Curvature correction

For the cases where a C0 continuous end point cannot be determined by a simple merger of PLIC interface end points
(Fig. 3(c) or in the case of a boundary cell), the application of the above C1 correction procedure is not feasible. However,
such an uncorrected end point would result in interface representation which is no better than the PLIC reconstruction
locally. This necessitates an alternative correction procedure in which the discontinuous end point is moved along the cell
boundary in such a way that the curvature at the mid point of the interface matches the curvature of a selected neighboring
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mixed cell. The selected interfacial cell for this purpose should not be close to empty or full (i.e. 0:02 < F < 0:98), as the
points which define the parabolic curve in these cells are generally close to each other in the physical domain and hence,
can lead to erroneous extrapolation as compared to the cells which are half-filled. Once again analytical expressions have
been derived to aid in locating the end point where the curvature of these interfaces match.

In terms of the coefficients (a, b and c), the curvature ðjÞ of a parabola at any point is given by
j ¼ �2a

ð1þ ð2axþ bÞ2Þ3=2 : ð17Þ
By substituting for coefficients a and b, the curvature at the mid point of the parabola (point 2) can be obtained as a function
of the end points 1 and 3 as
j ¼ �2f3ðy1 þ y3Þðx3 � x1Þ � 6½F � Acell þ Aphðx1; x3Þ�g
ððx3 � x1Þ2 þ ðy3 � y1Þ

2Þ3=2 : ð18Þ
Fig. 7 shows the configuration of a parabola for which the point 1 is C0 continuous and point 30 of cell II is discontinuous and
hence correcting this end point involves satisfying the following condition,
jjI20 ¼ jjII2 ; ð19Þ
where jjI20 is the midpoint curvature of the neighbouring interfacial cell. The curvature jjII2 can be parameterized, based on
either of the end points using the relations described in Eq. (13). For a given cell, the dependence of the midpoint curvature
on the end point 30 can be expressed as
jðx3ÞjII2 ¼
Aaþ B

fCa2 þ Daþ Eg3=2 ; ð20Þ
where
A ¼ �6½ðyj � yiÞðxi � x1Þ þ ðy1 � yiÞðxj � xiÞ�;
B ¼ �6ðy1 þ yiÞðxi � x1Þ þ 12½F � Acell þ Aphðx1; xiÞ�;
C ¼ ½ðxj � xiÞ2 þ ðyj � yiÞ

2�;
D ¼ 2½ðxj � xiÞðxi � x1Þ þ ðyi � y1Þðyj � yiÞ�;
E ¼ ½ðxi � x1Þ2 þ ðyi � y1Þ

2�:
In certain cases, the midpoint curvature may have to be parameterized in terms of the end point 1 and in such circumstances,
the resulting coefficients of Eq. (20) will be
A ¼ 6½ðyj � yiÞðxi � x3Þ þ ðy3 � yiÞðxj � xiÞ�;
B ¼ 6ðy3 þ yiÞðxi � x3Þ þ 12½F:Acell þ Aphðxi; x3Þ�;
C ¼ ½ðxj � xiÞ2 þ ðyj � yiÞ

2�;
D ¼ 2½ðxj � xiÞðxi � x3Þ þ ðy3 � yiÞðyj � yiÞ�;
E ¼ ½ðxi � x3Þ2 þ ðyi � y3Þ

2�:
From Eq. (20), the analytical relation for matching curvature of the neighbouring cells is obtained as
f ðaÞ ¼ Aaþ B

fCa2 þ Daþ Eg3=2 � jjI20 ¼ 0: ð21Þ
x
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Fig. 7. Matching curvature at discontinuous and boundary interfaces.
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The above equation can be solved iteratively to obtain the new location of the discontinuous end point at which the desired
curvature conditions are fulfilled. In cases where the boundaries of the domain are defined by solid walls, the end point cor-
rection can also be achieved by matching the slope of the curve (Eq. (14) a and b) with the known contact angle for the fluid
interface. The iterative use of Eq. (21) in conjunction with Eq. (16) applied to all interface segments results in a smooth qua-
dratic spline representation of the entire interface.

During the above correction through Eq. (21), if any end point of the interface does not lie on the correct cell edge (due to
the initial PLIC approximation), the value of a obtained will become out of bounds (a < 0 or a > 1). In such cases, the end
point is allowed to jump over to the consecutive edge of the cell, provided the resultant configuration does not end up having
both the interface end points of the cell located on the same edge. This scenario is illustrated in Fig. 8 where the initial PLIC
end points (Fig. 8(b)) for the fluid interface configuration shown in Fig. 8(a) cannot be forced to meet at the common edge
(2–4) of cells I and II using the C0 correction procedure described in Section 2.2. As a result, these end points are adjusted
through the curvature correction procedure explained above, which will result in the value of a exceeding the allowable lim-
its (a < 0 or a > 1). This has to be generally constrained to lie within the extents of the cell edge (edge 2–1 for cells I and edge
3–2 for the cell II) by making a ¼ e if a < 0 and a ¼ 1� e if a > 1, where e is very small. However, such a constrained QUASI
interface shown in Fig. 8(c) is still inconsistent with respect to fluid zones and will result in erroneous curvature estimates.
This problem can be easily rectified by forcing (appropriately setting a ¼ 0 or a ¼ 1) the end points to meet on vertex 2,
which will automatically form a C0 continuous point on the common edge 2–4. In other words, the end point of interface
lying on the edge 1–2 of cells I and on edge 2–3 of cell II jumps over the vertex 2 to get associated with the common edge
2–4. Subsequent C1 corrections result in an interface configuration (Fig. 8(d)) which is almost identical to the shape of the
original fluid structure.

2.6. Remarks

The iterative correction steps involved in the QUASI algorithm significantly augment the robustness of initial PLIC repre-
sentation for the interface. In fact, a proper establishment of C0 continuity across the cells as described here actually en-
hances the consistency of adjacent fluid zones in the domain, which a typical PLIC representation generally misses out.
Also, the current implementation of various constraining procedures ensures localization of errors and aids in a faster attain-
ment of stable and consistent interface configuration. Any correction process involving a pair of mixed cells does not affect
the volume conservation in their neighborhood since the movement of an end point of a parabola is compensated by altering
the location of central point ‘2’ to satisfy volume constraint in the cell. This process just induces a small slope imbalance at
the other end point and does not mandate a large displacement of the point. Hence, any correction process is highly localized
and this feature of the algorithm has been observed to ensure faster convergence of the overall interface geometry. On the
other hand, representation in the form of a spline using two points per interfacial cell as in [11] requires significant change in
Fig. 8. Vertex jumping of discontinuous end points to obtain C0 continuity: (a) original shape of the sector of a circle; (b) discontinuous PLIC interface; (c)
QUASI interface without vertex jump and (d) QUASI interface with vertex jump.
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the position of the other end point to satisfy volume conservation. This in turn, necessitates altering the end point positions
in the subsequent cells also. Hence any local error in interface representation propagates to the whole spline, often leading to
interfacial oscillations.
3. Static interface reconstruction using QUASI algorithm

The efficacy of the QUASI algorithm can be assessed using reconstruction tests of standard interface geometries like
straight lines, circles and squares. All the tests carried out here use a square domain of size 1 � 1 with the center of the cir-
cle/square or the base point of the straight line located randomly within the diagonal limits of (0.4,0.4) and (0.6,0.6). The
truncated volume of primary fluid in each cell is estimated analytically and a cell is defined as interfacial when
e < F < 1� e, where e is 10�6. The L1 norm of the error between the original interface Q exðx; yÞ and the reconstructed inter-
face Q recðx; yÞ in the mixed cells is used to quantify the accuracy of various reconstruction procedures
L1 ¼
1
l

XN

i¼1

Z
jQexðx; yÞ � Q recðx; yÞjdx; ð22Þ
where ‘l’ refers to the total length of interface segment. The summation (Eq. (22)) described above is carried out over all the
mixed cells (N) in the domain and the integral inside the summation actually corresponds to the area between the original
and the reconstructed interface representation. In order to avoid accidental favoring of any particular interface orientation
by the reconstruction method, an average error of over 1000 randomly generated sample geometries has been reported for
each test problem. The results of the current method have been compared with those obtained by the PLIC methods of
Youngs’ [6] and Pilliod and Puckett [14]. The convergence rate of each algorithm is estimated based on the power law var-
iation of truncation error with the grid spacing. The functional form of the convergence rate is expressed as,
H ¼
ln Lkþ1

1 =Lk
1

� 	
lnð0:5Þ ; ð23Þ
where the superscript k represents the level of mesh refinement.
3.1. Reconstruction of random circles

Structures of circular shape have great relevance in bubble/droplet dynamics and hence understanding the reconstruction
accuracy of circles is of vital interest. In the current test, the radius of the circle has been randomly varied between 0.2 and
0.25 keeping in mind the need for the radius to be at least twice larger as compared to the cell size for a successful recon-
struction using VOF. Although the parameters selected above restrict the entire circle to lie bounded within the domain, the
curvature correction procedure of the QUASI algorithm allows for accurate reconstruction of circles extending outside the
domain as well (Fig. 2). Table 1 shows the average reconstruction error of 1000 random circles generated within the domain.
The results reveal that the QUASI algorithm has error of two to five orders of magnitude lower than any typical PLIC method.
The table also brings out the error reduction from the progressive corrections (PLIC ? C0 continuity ? C1 continuity) em-
ployed in the current QUASI algorithm. The improved accuracy of QUASI reconstruction is mainly due to the quadratic rep-
resentation of the interface with the iterative implementation of the C0 and C1 continuities further adding to its advantage. A
comparison of the QUASI interface with the original circle (Fig. 9) reveals its closeness to the exact shape even on a coarse
mesh. On the contrary, the interface obtained from the PLIC reconstruction is discontinuous.
3.2. Reconstruction of random lines

Understanding the ability of the reconstruction algorithm to represent interfaces with straight line shapes is essential as
flat interfaces form part of most stratified multiphase flow regimes. In this test, straight lines cutting across the domain are
generated randomly with their base point located close to the domain center. The results of the error analysis for 1000 ran-
dom straight lines are presented in Table 2. As expected, the ELVIRA method [14] reconstructs the straight line interface ex-
actly and using ELVIRA as an initial PLIC estimator for the current QUASI reconstruction would have had a similar effect.
Since Youngs’ stencil [6] is used to estimate the initial interface shape, the error from the QUASI algorithm is not close to
machine zero even though it is very low as compared to the Youngs’ algorithm. The error in the current case primarily occurs
due to the definition of the truncated mixed cell ðe < F < 1� eÞ which sometimes results in discontinuity of the interface
within the domain. For a generalized and robust QUASI algorithm this truncation becomes necessary and even upon includ-
ing the error due to this truncation, the level of accuracy obtained in the current test case substantiates the suitability of the
QUASI method for all practical problems. It is interesting to see that the asymptotic error reduction is linear with step size
due to the straight line geometry being approximated here; in other words, the quadratic approximation of the present algo-
rithm becomes ineffective for this case.



Table 1
Reconstruction error averaged for 1000 random circles.

Grid Youngs’ method (PLIC) ELVIRA (PLIC) QUASI (after C0 correction) QUASI (after C1 corrections)

Error ðL1Þ Order ðHÞ Error ðL1Þ Order ðHÞ Error ðL1Þ Order ðHÞ Error ðL1Þ Order ðHÞ

102 1.37E�03 2.63E�03 7.96E�04 3.82E�05
1.93 1.66 1.58 4.17

202 3.60E�04 8.34E�04 2.66E�04 2.13E�06
1.58 1.68 2.20 4.02

402 1.20E�04 2.59E�04 5.79E�05 1.32E�07
1.26 1.82 1.46 3.99

802 5.04E�05 7.39E�05 2.10E�05 8.31E�09
1.12 1.91 0.94 3.96

1602 2.32E�05 1.97E�05 1.09E�05 5.34E�10
1.05 1.94 0.92 3.31

3202 1.12E�05 5.13E�06 5.77E�06 5.39E�11

Fig. 9. Reconstruction of a circle: (a) original shape; (b) PLIC reconstruction and (c) QUASI reconstruction.

Table 2
Reconstruction error averaged for 1000 random lines.

Grid Youngs’ method (PLIC) ELVIRA (PLIC) QUASI (current)

Error ðL1Þ Order ðHÞ Error ðL1Þ Order ðHÞ Error ðL1Þ Order ðHÞ

102 2.89E�04 �0 7.04E�12
0.82 – 1.29

202 1.64E�04 �0 2.87E�12
0.93 – 1.70

402 8.61E�05 �0 8.83E�13
0.96 – 1.72

802 4.43E�05 �0 2.68E�13
0.98 – 1.01

1602 2.24E�05 �0 1.33E�13

9118 S.V. Diwakar et al. / Journal of Computational Physics 228 (2009) 9107–9130
3.3. Reconstruction of random squares

Even though the presence of surface tension rules out the possibility of sharp corners in real fluid structures, it is of aca-
demic interest to understand the reconstruction of this singularity by various methods. Bounded squares of random
orientation are generated within the domain such that the center of the square lies in the vicinity of the domain center. Also
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the side length of the square is randomly varied between 0.4 and 0.6 such that the fluid structure is sufficiently resolved.
Fig. 10 shows the PLIC and QUASI interfaces obtained for a square of side length 0.5 aligned with the coordinate axes.
The QUASI interface closely follows the actual square, except in the cells which contain the corner singularity. Although
the order of curve used in QUASI algorithm is insufficient for an accurate corner representation, the continuous interface
configuration obtained here is more reasonable as compared to the PLIC interface. This effect is corroborated from the quan-
titative L1 error (Table 3) estimated for 1000 random squares considered within the domain. Since the corner singularity
forms the major contributor of error for this geometry, the lower magnitude of error for the QUASI algorithm reveals better
representation of the corner due to higher order interface approximation and implementation of C0 and C1 continuity con-
straints on the interface.
3.4. Computational time metrics

Along with the assessment of interface reconstruction accuracy, an estimate of the computational cost involved in using
the QUASI method is essential to thoroughly weigh the overall performance of the algorithm. In this regard, the total com-
putational time involved in the reconstruction of 1000 random circles as described in Section 3.2 is reported in Table 4.
Understandably, the computational effort required for one C0 correction and 10 C1 corrections steps per sample is much
higher than the simple gradient calculation procedure involved in the Youngs’ PLIC algorithm. This is exactly reflected in
the metrics of Table 4 where the ratio of computational time for pure reconstruction process between the current QUASI
algorithm and the Youngs’ PLIC method is found to vary between 57 and 30. Even with the error minimization procedure,
the ELVIRA reconstruction method is 3–7 times faster than the current QUASI algorithm. However, in most practical prob-
lems, the interface reconstruction process forms a small part of the multiphase simulation procedure. Hence, any increase in
the computational effort of reconstruction does not induce a proportional increase in the total simulation time. In fact, it
would be shown later that the computational time increase for the QUASI algorithm in a typical multiphase flow problem
(air bubble rise in water) is around 5% of the computational time required by the PLIC method; thus offering a high benefit
to cost ratio.
4. Dynamic interface reconstruction using the QUASI algorithm

The dynamic tracking of the fluid structures in a flow situation requires an advection algorithm to be used in conjunction
with the interface reconstruction method. Even though the functional accuracies of the interface reconstruction method and
the advection process are mutually independent, the cumulative performance of these methods plays an important role in
real flow simulations. The details of the advection algorithm used in the current work are briefly described in the remainder
of the section. Also two test problems have been discussed which effectively bring out the enhancement in accuracy while
using the QUASI interface reconstruction.
Fig. 10. Reconstruction of a square: (a) original shape; (b) PLIC reconstruction and (c) QUASI reconstruction.



Table 3
Reconstruction error averaged for 1000 random squares.

Grid Youngs’ method (PLIC) ELVIRA (PLIC) QUASI (current)

Error ðL1Þ Order ðHÞ Error ðL1Þ Order ðHÞ Error ðL1Þ Order ðHÞ

102 4.97E�03 4.87E�03 2.77E�03
1.90 2.00 1.86

202 1.33E�03 1.22E�03 7.63E�04
1.82 2.02 2.14

402 3.76E�04 3.02E�04 1.73E�04
1.68 1.99 1.98

802 1.17E�04 7.60E�05 4.37E�05
1.52 2.00 1.99

1602 4.06E�05 1.90E�05 1.10E�05
1.36 2.00 2.02

3202 1.58E�05 4.76E�06 2.71E�06

Table 4
Relative computational time (s) of various reconstruction methods.

Grid Youngs’ method (PLIC) ELVIRA (PLIC) QUASI (current)

402 0.44 6.74 25.25
802 0.92 13.54 52.79
1602 3.26 28.19 151.01
3202 13.25 59.38 401.41
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4.1. VOF advection

In VOF method, the transient evolution of interface is basically obtained by conserving the primary fluid volume fraction
in the domain using the equation
@F
@t
þ ~U � ~rF ¼ 0: ð24Þ
The discrete nature of F necessitates geometric estimation of the convection term in the above equation, which involves cal-
culation of material fluxes through the cell faces based on the reconstructed interface. Conventionally, the time integration of
the above equation is carried out by two methods namely, the operator-split and unsplit algorithms. In the current work, the
unsplit time integration algorithm named Edge-Matched Flux Polygon Advection (EMFPA) of Lo’pez et al. [12] has been used
due to its relative simplicity and better accuracy over other methods. The method primarily constructs non-intersecting
polygons which represent the total fluid zones that will advect through each face of the cell during the given time. With
the known location and orientation of interface in the cell, the estimation of actual material flux implies identification of
primary fluid zones within these flux polygons. In view of these considerations, the scalar conservation equation (Eq.
(24)) can be simplified as
Fnþ1 ¼ Fn � 1
Acell

X4

i¼1

AFi; ð25Þ
where AFi is the area of the primary fluid leaving the cell face ‘i’ in time Dt (Fig. 11).
The detailed steps for estimating this area for a PLIC configuration have been discussed elaborately by Lo’pez et al. [12]. In

the current work, slightly more computations are involved since the interface is represented by a parabola. The steps in-
volved in the area calculation are briefly given below.

1. Construct the flux polygon based on the volumetric efflux through the cell face [12].
2. Find the relative position of the flux polygon vertices with respect to the parabolic interface (i.e. location with respect to

the primary fluid zone).
3. Find the points of intersection of the parabolic interface with the flux polygon.
4. Using the flux polygon vertices lying in the primary fluid zone and the points of interface intersection, form a clockwise/

counter-clockwise hybrid polygon whose edges are either straight lines or parabolas. For the clockwise hybrid polygon
(1–2–5–6) shown in Fig. 9, edges 1–2, 2–5 and 6–1 are straight lines and edge 5–6 is a part of parabola.

5. The area bounded by the hybrid polygon (with n sides) can be obtained by summing the area under these edges taken in
proper order. i.e.
AFi ¼
Xn

p¼1

Apq: ð26Þ
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Fig. 11. EMFPA algorithm using QUASI reconstruction.
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Here, ‘q’ is the consecutive vertex of the polygon taken in clockwise or anti-clockwise order and the area Apq under the edge
p � q is defined as
Table 5
Errors i

Reco

Youn
Puck
Youn
SIR –
ACLS
ACLS
Linea
Quad
Quad
QUA
Apq ¼
ðxq � xpÞ

yqþyp

2

� 	
Edge p� q� Straight line;

a x3
q�x3

pð Þ
3 þ b x2

q�x2
pð Þ

2 þ cðxq � xpÞ Edge p� q� Parabola:

8<:

Using the above EMFPA algorithm implementation, we now quantify the enhancements obtained by the usage of QUASI

reconstruction method in some standard benchmark cases with advection.

4.2. Zalesak slotted disk rotation

The first benchmark case is the problem suggested by Zalesak [18] where a slotted circle of the primary fluid is rotated for
one complete revolution in a uniform vorticity field. The parameters for the current tests have been adopted from the work
of Rudman [19] and the error is defined as
En ¼
P

i;jjF
n
i;j � F0

i;jjP
i;jF

0
i;j

; ð27Þ
where ‘n’ represents the number of revolutions of the slotted disk.
Table 5 shows the comparison of E1 errors (Eq. (27)) for various reconstruction and advection techniques after one com-

plete anti-clockwise revolution of the slotted disk. It is evident that the current combination of QUASI reconstruction and
EMFPA advection has the lowest magnitude of error among the methods compared in the table. The interface profiles ob-
tained using Youngs’ PLIC-EMFPA and QUASI-EMFPA techniques after 1, 5 and 10 complete revolutions are shown in
n slotted circle rotation after one complete revolution.

nstruction – advection algorithm Error ðE1Þ

gs – stream [20] 1.07E�02
ett – stream [20] 1.00E�02
g – EMFPA [12/current work] 1.06E�02
EMFPA [12] 8.74E�02

VOF (uniform triangular grid) [21] 7.19E�03
VOF (adaptive triangular grid) [21] 1.25E�02
r least square fit – split Lagrangian [15] 9.42E�03
ratic fit – split Lagrangian [15] 5.47E�03
ratic fit + continuity – split Lagrangian [15] 4.16E�03

SI – EMFPA (current work) 2.69E�03
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Fig. 12(a)–(c), respectively. Except for smoothened corners of the slot, the interface shape of the QUASI reconstruction is al-
most identical to the original shape of the slotted disk even after progressive number of revolutions. This is in stark contrast
to the interface shape obtained from the PLIC method where the slot undergoes severe shape distortion continuously. Since
the order of the parabolic curve is insufficient to track the corner singularity, sharp corners of the slot are transiently smooth-
ened till an asymptotically stabilized shape evolves. After arriving at this stabilized interface shape, there is no visible
change/distortion in the fluid structure with increasing number of revolutions. The iterative implementation of C0 and C1

constraints along with the quadratic representations of the interface segments, results in the asymptotic stabilization of er-
ror with respect to iterations. The computational time involved in tracking one revolution of the slotted circle using the cur-
rent QUASI reconstruction and the Youngs’ PLIC method is around 1342 s and 485 s respectively for a mesh of 200 � 200
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Fig. 12. Zalesak slotted circle after (a) one; (b) five and (c) ten complete revolutions in a uniform vorticity field.
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nodes. With the inclusion of advection process in the above test, the proportion of total time spent on the reconstruction
process decreases and this reduces the computational time disparity between these methods to a factor of 3 from the high
values shown in Table 4.

4.3. Rider–Kothe reversed single vortex

The assessment of accuracy in a rotational field alone does not effectively bring out the usability of reconstruction meth-
ods as these flow situations are hardly experienced in real fluids. A better test of interface reconstruction and advection was
suggested by Bell et al. [22] and was subsequently modified by Rider and Kothe [23], where the deformation of a circle placed
in a time-reversed non-uniform vorticity field was studied. The solenoidal velocity distribution in the domain of size 1 � 1 is
obtained by defining the stream function field as
Table 6
E1 error

Reco

Youn
Youn
Youn
Linea
Quad
Quad
Mixe
SIR –
QUA
Wðx; y; tÞ ¼ 1
p

sin2ðpxÞ sin2ðpyÞ cos
pt
T

� �
: ð28Þ
By the above formulation the fluid structure gets deformed to the maximum extent at time t = T/2 and returns back to the
original position at time t = T. The error (defined below) due to the reconstruction/advection algorithm for the given grid
spacing ‘h’ is quantified by comparing the initial and final volume fraction (F) distributions.
E1 ¼
X

i;j

h2jFfinal
i;j � F initial

i;j j: ð29Þ
In the current test problem, a circle of radius 0.15 initially placed at (0.5,0.75) is allowed to deform in the above solenoidal
velocity field (Eq. (28)) with a time period of T = 2 s. Table 6 shows the comparison of E1 errors obtained by various methods
at different CFL numbers (1,0.1) and grid sizes (32 � 32, 64 � 64, 128 � 128). Once again the QUASI/EMFPA algorithm has
the lowest error as compared to any other combination of available methods. The improvement in the interface reconstruc-
tion is clearly evident from the errors calculated at the two different CFL numbers. For the given time duration, the decrease
in the CFL number increases the number of reconstruction and advection steps involved to track the interface and an increase
in the error is a cumulative effect of each reconstruction/advection step. Incidentally, the Youngs’ stencil in conjunction with
the same EMFPA algorithm shows an increase in error at lower CFL number in contrast to the QUASI/EMFPA algorithm; this
illustrates the accurate nature of the QUASI reconstruction. Even the least square fitting method of Scardovelli and Zaleski
[15] shows an increase in error and only the hybrid marker and VOF technique of Aulisa et al. [21] shows a behavior similar
to the QUASI reconstruction. Fig. 13 shows the QUASI and PLIC reconstructed interface profiles of the deformed circle at time
t = T/2 and t = T for the grids of 32 � 32 and 128 � 128.

5. Curvature estimation and surface tension modeling

Modeling of flows with dominant surface tension effects involves the estimation of attributes like local interface curva-
ture for the force evaluation. This generally requires the use of special curvature calculation methods [7,8] which operate
directly on the volume fraction distribution in the domain. Alternatively, with the use of higher order interface representa-
tion [9–12], the interface curvature can also be obtained directly from the predicted shape of the interface. Such a conve-
nience is available in the current QUASI reconstruction algorithm also, where the use of parabolic interface segments
with enforced C0 and C1 continuities enables a direct and accurate estimate of the curvature in each mixed cell.

5.1. Accuracy of curvature estimation

In order to quantify the curvature estimation accuracy of the QUASI reconstruction, a simple test suggested by Cummins
et al. [8] is used here. A circle of radius 0.25 is placed at (0.5,0.5) in the domain of size 1 � 1. The mesh size is varied between
0.005 and 0.05 and the L2 norm of the error in curvature is defined as
s for a circle placed in reversed single vortex for various reconstruction/advection algorithm (T = 2).

nstruction – advection algorithm CFL = 1.0 CFL = 0.1

nx ¼ 32 nx ¼ 64 nx ¼ 128 nx ¼ 32 nx ¼ 64 nx ¼ 128

gs – stream [20] 2.49E�03 7.06E�04 2.23E�04 - – –
gs – EMFPA (current) 2.31E�03 6.89E�04 2.25E�04 3.15E�03 8.96E�04 3.16E�04
gs – EMFPA [12] 2.32E�03 6.72E�04 2.24E�04 – – –
r least square fit – EI – LE advection [15] 1.75E�03 4.66E�04 1.02E�04 2.22E�03 – –
ratic least square fit – EI – LE advection [15] 1.88E�03 4.42E�04 9.36E�05 2.00E�03 – –
ratic least square fit + continuity – EI – LE advection [15] 1.09E�03 2.80E�04 5.72E�05 1.14E�03 – –
d markers and VOF method [21] 1.00E�03 2.69E�04 5.47E�05 6.38E�04 1.57E�04 1.61E�05
EMFPA [12] 8.62E�04 2.37E�04 5.62E�05 – – –

SI – EMFPA (current) 6.65E�04 1.57E�04 4.33E�05 2.72E�04 5.85E�05 1.08E�05



Fig. 13. Reconstructed interface profile at time t = T/2; (Inset: t = T) at different grid sizes (a) QUASI – 32 � 32; (b) QUASI – 128 � 128; (c) PLIC – 32 � 32 and
(d) PLIC – 128 � 128.
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L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðji � jexactÞ2

N

s
: ð30Þ
Here, the performance of the QUASI reconstruction is compared with the convolution technique of Williams et al. [7] and the
Height Function (HF) method described by Cummins et al. [8].

In the convolution technique used here, mollified volume fractions ðeFÞ are obtained by convolving the original discrete F
field using a radially symmetric sixth-order kernel ðK6Þ as defined in [24] with a smoothing length of d ¼ 1:9h1=2. The con-
tinuous nature of this mollified volume fraction allows for the finite difference estimation of the interface normal ð~n ¼ reFÞ
and the curvature ðj ¼ ~r �~nÞ. The height function method uses a stencil-based estimation, where discrete sums (volume
integrals) of volume fractions along the direction of largest F gradient are differentiated to calculate the local interface cur-
vature. The steps involved in the height function algorithm are discussed elaborately by Cummins et al. [8] and Francois et al.
[24]. In the current QUASI algorithm, the curvature is directly estimated at the mid point of the parabolic interface using
Eq. (17).

Fig. 14 shows the variation of L2 norm of curvature error obtained using various curvature estimation methods for the
mixed cells with F between 0.01 and 0.99. It is evident that both the height function and the QUASI reconstruction methods
possess second order error convergence as compared to the convolution technique which exhibits only first order accuracy.
However, the QUASI reconstruction procedure has the lowest magnitude of error as compared to the other algorithms.
Although the height function method has second order convergence, it requires the fluid scales to be adequately resolved
by the grid and hence the method is unattractive for coarser meshes. The convolution technique, on the other hand, is devoid
of this problem; but it is sensitive to the size of the kernel support, whose general behaviour is not well understood. In view
of these facts, the current QUASI algorithm offers a promising alternative by possessing both robustness and second order
accuracy.

5.2. Modelling of Surface tension effects in multiphase flow

The inclusion of surface tension effects in a fixed-grid multiphase flow model is not a straightforward task, since these
effects manifest as local surface forces near the fluid interface. The fundamental difficulties in modelling these local phenom-
ena have been conventionally overcome by the use of Continuum Surface Force (CSF) approximation [25] which represents
surface tension as a continuous volumetric force in the vicinity of the interface. In spite of the apparent simplicity, problems
arise while modeling flows with dominant surface tension effects, since the CSF approximation tends to produce spurious or
anomalous flow currents near the interface. The major reasons for such spurious currents include improper balance of sur-
face tension force and pressure gradients in the CSF implementation and the usage of erroneous curvature estimates to
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Fig. 14. L2 norm of error in estimation of curvature for a circular interface.
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calculate the body force. While the recent flow algorithms [10,24] have meticulously addressed the former issue by identi-
cally discretizing the pressure gradients and the surface tension force at various locations of interest, the special curvature
calculation procedure such as the Height function method, the reconstructed distance function technique of Cummins et al.
[8], PROST of Renardy and Renardy [10], SIR of Lo’pez et al. [12] and the current QUASI algorithm rigorously attempt to tackle
the latter issue.

The flow algorithm used in the current work extends the implementation of Renardy and Renardy [10] to a semi-stag-
gered grid (Fig. 15) based finite volume scheme which allows similar discretization of pressure gradient and surface tension
terms at the cell faces and cell centres. The semi-staggered grid arrangement used here stores the velocity information (both
u and v) on the cell vertices and the pressure information on the cell centres, thereby forming two types of cells (continuity
and momentum cells) to ensure proper pressure–velocity coupling. The volume fraction information is also assigned to the
centres of continuity cells since it is intimately coupled with mass balance. A single momentum conservation equation
(given below) is applicable for both the phases and it is evaluated using the momentum cell shown in Fig. 15(a)
@ðq~uÞ
@t
þr � ðq~u~uÞ ¼ �rðP1 þ P2Þ þ r:ðlðr~uþrT~uÞÞ þ q~g þ~Fc

ST : ð31Þ
Here~u and~g represent the velocity field and the acceleration due to gravity, respectively and~Fc
ST is the surface tension force

acting at the centre of a momentum cell (in the form of a body force). Properties like density q and viscosity l are evaluated
based on the volume fraction of primary fluid in a cell using the expressions
q ¼ Fqprimary þ ð1� FÞqsecondary; ð32Þ
1=l ¼ F=lprimary þ ð1� FÞ=lsecondary: ð33Þ
The current algorithm uses two components of pressure (P1 and P2) to satisfy the overall conservation equations. First, the
exact balance between the capillary pressure component P1 and the singular surface tension force~FST is achieved by forcing
~FST �rP1 to be divergence free within the domain. With regard to the current finite volume scheme, this condition can be
suitably converted into an integral form of surface force balance equation (given below) which is applicable over each con-
tinuity control volume as shown in Fig. 15(b)
I

@P1

@n
dl ¼

Z Z
r �~Ff

ST dA: ð34Þ
Here, the pressure gradients and the surface tension force are identically estimated at the continuity cell faces using the pres-
sure nodes (which also store volume fraction information) on either side of the face. This in turn requires a separate surface
tension ~Ff

ST

� 	
formulation in order to obtain proper force balance at these cell faces. For the face ðiþ 1=2; jÞ of cell ði; jÞ, the

surface tension force can be evaluated as
~Ff
ST ¼ �rjiþ1=2;jrFiþ1=2;j; ð35Þ
where r is the coefficient of surface tension and the curvature j (at the cell face) is obtained as a weighted average [11] of
cell centred curvatures in related continuity cells through the expression
jiþ1=2;j ¼
xi;jji;j þxiþ1;jjiþ1;j

xi;j þxiþ1;j
: ð36Þ
For any cell ‘x’, the weighing factor can be obtained as xx ¼ Fxð1� FxÞ. Also, the volume fraction gradients at the cell faces
can be obtained by setting
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Fig. 15. Schematic of semi-staggered grid arrangement.
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@F
@x
¼ ðFiþ1;j � Fi;jÞ=Dx;

@F
@y
¼ 0: ð37Þ
Using the capillary pressure thus obtained, momentum conservation equation (Eq. (31)) is solved over the momentum cells
(Fig. 15(c)) to evaluate the guessed velocity field in the domain. However, any attempt to calculate the surface tension force
~Fc

ST at the momentum cell centre using interpolation of values from the continuity cell faces would undermine the premise of
perfect force balance. Hence, a distinct formulation of surface tension force (shown below) is used to obtain proper force
balance at the momentum cell centres
~Fc
ST ¼ �rjrF: ð38Þ
Here, the curvature j (for the momentum cell) is again evaluated as the weighted average of cell centred curvatures in
related continuity cells as
j ¼ xi�1=2;j�1=2ji�1=2;j�1=2 þxiþ1=2;j�1=2jiþ1=2;j�1=2 þxiþ1=2;jþ1=2jiþ1=2;jþ1=2 þxi�1=2;jþ1=2ji�1=2;jþ1=2

xi�1=2;j�1=2 þxiþ1=2;j�1=2 þxiþ1=2;jþ1=2 þxi�1=2;jþ1=2
: ð39Þ
Since the pressure and volume fraction values are collocated at the centre of continuity cells (which are also the vertices of
momentum cells), the gradient of pressure in Eq. (31) and volume fraction in Eq. (38) can be identically estimated (as shown
below) and thus, a proper force balance can be enforced.
@F
@x
¼ Fiþ1=2;jþ1=2 þ Fiþ1=2;j�1=2 � Fi�1=2;jþ1=2 � Fi�1=2;j�1=2

2Dx
;

@F ¼ Fiþ1=2;jþ1=2 þ Fi�1=2;jþ1=2 � Fiþ1=2;j�1=2 � Fi�1=2;j�1=2
:

ð40Þ
@y 2Dy
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Finally, the other pressure component P2 is evolved to satisfy mass conservation, using the Poisson equation given below:
Table 7
Magnitu

q2=q

(a) E
101

103

105

(b) C
101

103

105

(c) H
101

103

105

(d) Q
101

103

105
r � 1
q
rP2

� �
¼ r �

~u
Dt

: ð41Þ
In the current work, Incomplete Lower Upper (ILU) preconditioned Bi-Conjugate Gradient Stabilized (BICGSTAB, [26]) lin-
ear solver has been used to solve the pressure correction equation and the implicitly discretized momentum equations.

5.3. Inviscid static droplet in equilibrium

The efficacy of the above flow solver implementation can be best tested using the standard problem of an inviscid static
droplet placed in a quiescent fluid medium. In this test, usage of exact force estimates in the flow algorithm should yield a
velocity field which is close to machine zero and any anomalous behavior is a direct indicator of the persistent force imbal-
ance. The test parameters used here are adopted from the work of Francois et al. [24] where a droplet of radius 2 is placed at
the center of an 8 � 8 domain which is discretized with a mesh of size 40 � 40 spatially and time step of 10�6 s temporally. In
order to quantify the effectiveness of force balance implementation, the exact value of interfacial curvature for the above
droplet is first used in the surface tension term. The effect of using various other curvature estimates is then evaluated
for different density ratios (surrounding medium density ðq1Þ is maintained at 1 and the fluid density ðq2Þ inside the droplet
is varied between 1 and 105). The error in pressure jump across the interface is evaluated using three different norms
(EðDPtotalÞ; EðDPpartialÞ and EðDPmaxÞ) as defined by Francois et al. [24].

Table 7 shows the magnitudes of spurious currents and the various pressure error norms for different curvature estima-
tion methods and density ratios. Here, the magnitude of spurious currents obtained for an exact curvature specification
comes out to be of the order of round-off error irrespective of the density ratio. This is a consequence of the perfect balance
between the pressure gradient and the surface tension force obtained through the current implementation of the flow solver.
Although similar inferences can be obtained from the partial and the maximum norm of pressure jump across the droplet,
the value of total norm calculated is significantly large even upon using the exact value of curvature in surface tension esti-
mation. This norm quantifies the error involved in small pressure transition region obtained due to the CSF method which
generally smoothens the sharp pressure jump across the interface. The magnitude of spurious currents and pressure error
norms for other curvature estimation methods is a reaffirmation of the results from Section 5.1 where the current QUASI
algorithm was shown to exhibit the lowest magnitude of error with respect to curvature estimation. The decrease in the spu-
rious current velocities with the increase in density ratio conforms to the dimensional analysis of Francois et al. [24] which
showed inverse dependence between the velocity magnitude and the droplet density.

Table 8 shows the convergence behavior and the time-wise evolution of spurious currents in the same domain for differ-
ent curvature evaluation techniques. The order of convergence for the error in pressure jump closely replicates the results
obtained for curvature estimation in Section 5.1 where both the Height functions method and the QUASI technique exhibited
second order behavior. Also, these methods exhibit monotonic convergence of spurious velocity with respect to mesh size
and similar temporal growth rate (compared after 50 and 100 time steps). With its better curvature estimation capability,
the QUASI algorithm offers lower magnitude of error in all the situations compared.

5.4. Air bubble rise in water

In order to illustrate the use of the current QUASI algorithm for a complex flow situation, the test problem of an air bubble
rising in water column has been studied. This study demonstrates the robustness and applicability of the present interface
de of spurious currents and error in pressure jump for an inviscid static droplet in equilibrium using various curvature prediction methods.

1 j~ujmax EðDPTotalÞ EðDPPartialÞ EðDPMaxÞ

xact
1.47E�17 2.92E�02 1.17E�15 3.55E�13
1.65E�17 2.92E�02 1.17E�15 5.07E�13
1.65E�17 2.92E�02 7.79E�16 5.05E�13

onvolution
3.09E�06 5.01E�02 2.20E�02 3.57E�02
8.51E�09 4.94E�02 2.17E�02 2.79E�02
8.54E�11 4.94E�02 2.17E�02 2.79E�02

eight functions
8.29E�08 2.45E�02 4.90E�03 6.03E�03
2.18E�10 2.45E�02 4.89E�03 6.10E�03
2.19E�12 2.45E�02 4.89E�03 6.10E�03

UASI
2.73E�08 3.03E�02 1.11E�03 9.92E�04
9.86E�11 3.03E�02 1.10E�03 9.86E�04
9.94E�13 3.03E�02 1.10E�03 9.86E�04



Table 8
Convergence of error and temporal evolution of spurious currents for different curvature estimation methods.

R=Dx EðDPPartialÞ j~ujmax;1 j~ujmax;50 j~ujmax;100

(a) Convolution
5 8.598E�02 6.848E�07 3.423E�05 6.839E�05
10 3.758E�02 9.028E�07 4.485E�05 8.969E�05
20 2.032E�02 7.311E�07 3.669E�05 7.338E�05

(b) Height functions
5 2.152E�02 5.638E�08 2.813E�06 5.644E�06
10 4.924E�03 2.892E�08 1.338E�06 2.645E�06
20 1.201E�03 9.520E�09 4.683E�07 9.419E�07

(c) QUASI
5 2.167E�03 2.799E�08 1.429E�06 2.883E�06
10 6.639E�04 1.391E�08 6.958E�07 1.372E�06
20 1.683E�04 6.974E�09 3.782E�07 7.473E�07
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algorithm for a practical flow problem having large interfacial deformation. The problem uses a domain of size 2 � 4 with an
air bubble of radius 0.5 placed at location (1, 1) initially. The properties of the two fluids and other parameters used for the
simulations are listed in Table 9. Due to the lack of experimental and analytical data for the current problem, the temporal
evolution of the air–water interface obtained using QUASI reconstruction has been compared with the simulation obtained
by PLIC algorithm with height functions employed for curvature estimation.

Fig. 16 shows the transient evolution of the interface obtained using the PLIC and the QUASI reconstruction methods.
Although the two interface profiles show a close match initially, the difference between them emerges with time, as clearly
observed at t = 0.75 s. This fact is corroborated from the values of pressure jump across the interface listed in Table 10 at
various locations marked in Fig. 16. The transient thinning and leg formation of the air bubble structure depicted in
Fig. 16(c) renders both PLIC and QUASI algorithms ineffective for these under-resolved scales at later times. The liquid–
air interfaces after the breakup process (t = 1.3 s) are shown in Fig. 17 where similar fluid structures are predicted by these
methods. However the QUASI algorithm, despite its robustness at the macro scale, tends to produce minor interfacial oscil-
lations as compared to the PLIC technique involving Height functions for curvature estimation. Possible ways of overcoming
this difficulty include local mesh refinement and further sophistication of the reconstruction algorithm which are currently
being attempted by the authors.

The extra computational time involved for the above problem using QUASI algorithm is not more than 5% of the time re-
quired for the solution using the PLIC method. Even though the time involved in the iterative predictor–corrector operations
of the reconstruction process is high as compared to that of a typical PLIC algorithm, this does not have a serious implication
Fig. 16. Exact interface of the rising air bubble in water at (a) t = 0.25 s; (b) t = 0.5 s; (c) t = 0.75 s dotted line – PLIC interface; continuous line – QUASI
interface.

Table 9
Physical properties and simulation parameters for the bubble rise simulation.

Density of air 1:29 kg=m3

Density of water 1000 kg=m3

Viscosity of air 1:8� 10�5 Ns=m2

Viscosity of water 1:0� 10�3 Ns=m2

Coefficient of surface tension 0:072 N=m
Mesh 50 � 100
Time step 0.001 s



Table 10
Pressure jump across the interface at specific locations for a rising air bubble.

Time (s) A B C D

PLIC QUASI PLIC QUASI PLIC QUASI PLIC QUASI

0.25 432 431.2 1755.83 1753.05 729.45 715.05 1759.13 1753.66
0.5 596.7 562.35 2312.4 2314.2 122.2 108.05 2312.8 2315
0.75 360.7 232.9 1717.4 1678 128.5 113.1 1686.5 1678.2

Fig. 17. Liquid–air interface (F = 0.5) after 1.3 s from the initial condition.
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in the simulation of a coupled multiphase flow problem as the major share of the computational effort is consumed by the
flow solver.

Extension of current QUASI algorithm to three dimensions may not be a straight forward task, but is certainly achievable.
Possible ways of extension include representation of interfaces by quadratic surfaces, which can be evolved from an initial
piecewise planar approximation into a spline-surface representation of the interface. Similar to the approach of the current
QUASI algorithm, characteristic end points of the quadratic surfaces on the common cell faces can be adjusted to satisfy var-
ious levels of continuity.
6. Summary and conclusions

A new quadratic spline based interface reconstruction algorithm for continuous representation of the interface has been
presented. In this method, the initially discontinuous interface obtained by PLIC is progressively converted into to a smooth
and continuous quadratic spline curve, by the sequential enforcement of C0 and C1 continuities between each pair of neigh-
boring interfacial segments. Since all major changes in interfacial node locations occur during the C0-continuity stage, only
minor corrections are needed in the end point locations during iterative interface slope matching at the cell boundaries. The
availability of a free- floating mid- point in the quadratic spline approximation of each interfacial segment aids in the local-
ization of errors and virtually eliminates the global transmission of errors between segments. Employing analytical expres-
sions for predicting the locations of interfacial nodes at all stages of the interface reconstruction significantly reduces the
computational requirement. Although the present interface reconstruction procedure involves higher computational time
than a PLIC based solution, in a typical multiphase flow simulation exercise where the flow solver requires maximum
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computational effort, the simulation time increases only marginally. The continuous representation of the interface facili-
tates a direct estimate of the interface curvature with a low magnitude of error as well as monotonic second order error con-
vergence. Furthermore, in problems involving surface tension effects, the magnitudes of spurious currents are minimized
due to two sequential evaluations of the pressure field, catering to the effects of capillary forces and the evolving flow fields.
The basic QUASI algorithm is devoid of any assumption concerning the nature of the grid and hence it can also be coupled
with flow solver codes using unstructured meshes.
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